But one thing is clear -- our capacity to deal with a public health challenge of this sort rests heavily on the work of our scientific and medical community. And this is one more example of why we can't allow our nation to fall behind.
Unfortunately, that's exactly what's happened.
Federal funding in the physical sciences as a portion of our gross domestic product has fallen by nearly half over the past quarter century. Time and again we've allowed the research and experimentation tax credit, which helps businesses grow and innovate, to lapse.
Our schools continue to trail other developed countries and, in some cases, developing countries. Our students are outperformed in math and science by their peers in Singapore, Japan, England, the Netherlands, Hong Kong, and Korea, among others. Another assessment shows American 15-year-olds ranked 25th in math and 21st in science when compared to nations around the world. And we have watched as scientific integrity has been undermined and scientific research politicized in an effort to advance predetermined ideological agendas.
We know that our country is better than this. A half century ago, this nation made a commitment to lead the world in scientific and technological innovation; to invest in education, in research, in engineering; to set a goal of reaching space and engaging every citizen in that historic mission. That was the high water mark of America's investment in research and development. And since then our investments have steadily declined as a share of our national income. As a result, other countries are now beginning to pull ahead in the pursuit of this generation's great discoveries.
I believe it is not in our character, the American character, to follow. It's our character to lead. And it is time for us to lead once again. So I'm here today to set this goal: We will devote more than 3 percent of our GDP to research and development. We will not just meet, but we will exceed the level achieved at the height of the space race, through policies that invest in basic and applied research, create new incentives for private innovation, promote breakthroughs in energy and medicine, and improve education in math and science. (Applause.)
This represents the largest commitment to scientific research and innovation in American history.
Just think what this will allow us to accomplish: solar cells as cheap as paint; green buildings that produce all the energy they consume; learning software as effective as a personal tutor; prosthetics so advanced that you could play the piano again; an expansion of the frontiers of human knowledge about ourselves and world the around us. We can do this.
The pursuit of discovery half a century ago fueled our prosperity and our success as a nation in the half century that followed. The commitment I am making today will fuel our success for another 50 years. That's how we will ensure that our children and their children will look back on this generation's work as that which defined the progress and delivered the prosperity of the 21st century.
This work begins with a historic commitment to basic science and applied research, from the labs of renowned universities to the proving grounds of innovative companies.
Through the American Recovery and Reinvestment Act, and with the support of Congress, my administration is already providing the largest single boost to investment in basic research in American history. That's already happened.
This is important right now, as public and private colleges and universities across the country reckon with shrinking endowments and tightening budgets. But this is also incredibly important for our future. As Vannevar Bush, who served as scientific advisor to President Franklin Roosevelt, famously said: "Basic scientific research is scientific capital."
The fact is an investigation into a particular physical, chemical, or biological process might not pay off for a year, or a decade, or at all. And when it does, the rewards are often broadly shared, enjoyed by those who bore its costs but also by those who did not.
And that's why the private sector generally under-invests in basic science, and why the public sector must invest in this kind of research -- because while the risks may be large, so are the rewards for our economy and our society.
No one can predict what new applications will be born of basic research: new treatments in our hospitals, or new sources of efficient energy; new building materials; new kinds of crops more resistant to heat and to drought.
It was basic research in the photoelectric field -- in the photoelectric effect that would one day lead to solar panels. It was basic research in physics that would eventually produce the CAT scan. The calculations of today's GPS satellites are based on the equations that Einstein put to paper more than a century ago.
【免费咨询报名电话:010-6801 7975】
咨询报名MSN:xueliedu@hotmail.com
试一试网上报名
咨询报名QQ:
1505847972 | 1256358232 | 1363884583 | 1902839745 | 800072298 | 754854002 |
中专升大专 | 中专升本科 | 高升专 | 高升本 | 专升本 | 自考 |